
⬥ Results and Evaluation
⬥ Benchmarks: Clifford+T benchmarks 

from prior work[3-7], as well as additional 
near-term and fault-tolerant applications.

⬥ Metrics: Total and CNOT count.
⬥ Baselines: GRAY-SYNTH[3] (with T gate 

optimizations), Quartz[6], and QUESO[7] 
(state-of-the-art subcircuit rewriting) 

⬥ Verification: Pass equivalence checking 
by Qiskit and MQT QCEC

⬥ Results: PhasePoly outperforms both 
prior frameworks individually, reducing 
up to 50% total gate and 48.57% CNOT 
reduction. (averaging 34.70% and 
26.83%, respectively)

⬥ Hardware-aware phase 
polynomials optimization

➔ Embed hardware constraints and 
qubit mapping cost into synthesis

➔ Maintain valid sum-over-path 
representation

⬥ Fault-tolerant friendly phase 
polynomials optimization

➔ Improve full-program FTQC 
performance via logical-level gains

➔ Optimize T gate placement via 
phase polynomials, potentially 
improve magic state injection 
strategies, and facilitate qubit reuse

⬥ Motivation
⬥ Phase polynomials are key building block
⬥ 75% of gates are {CNOT, Rz} in selected circuits
⬥ Commonly used in Clifford+T circuits optimization

⬥ Current phase polynomial approaches[3]

⬥ Independently optimize phase- and output-parity 
network and single-block phase polynomials

⬥ Local equivalent subcircuit rewriting approaches[6-7] 
struggle with scalability

⬥ Standing Alone, Working Together: 
Orthogonal Integration with Other Frameworks

⬥ Breaking the Single-Block Barrier:
Cross-Block Optimization

(a) Without SSA-style cross-block intermediate representation(IR) and optimization, 
the term q0Ⓧq2, cannot be reused due to Hadamard gate block barrier

(b) After cross-block IR and optimization, three blocks are merged into a single 
phase polynomial region. 

(c) Cross-block optimization reorders the parity network structure and reducing 
CNOT gates from 10 to 8 through the reuse of q0Ⓧq2
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⬥ Beyond the Phase Parity: Phase Polynomial Co-Optimization

1. Background and Motivation
⬥ Background

• We can construct a phase polynomials 
circuit using {CNOT, Rz}. 

• Phase polynomial circuits can be 
represented as sum-over-path[2]:

• Phase-parity network: p(x) 
• Output-parity : g(x)
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⬥ Extensible phase polynomials 
optimization

⑧

a. Ours alone: 
  strong reductions (~35% 
  total, ~27% CNOT)
b. Ours + Others: 
  only marginal gain (≤ +1%)
c. Others + Ours: 
  significant results boost  
  (+7–13% and +6–10%)

d. QUESO[7]: 
  ✔ considers phases 
  ☹ but still misses a lot

e. Quartz[6]:
  ✖ ignores phases;
  ☺ with ours, achieves best


